Student Number:

SG.GHS

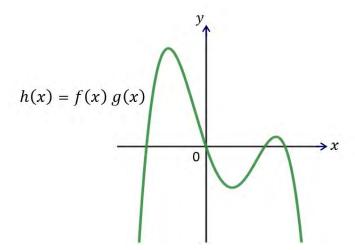
Teacher:

St George Girls High School

Mathematics Extension 1

General	 Reading time – 10 minutes 					
Instructions	• Working time – 2 hours					
	Write using black pen					
	• Calculators approved by NESA may be	used				
	• A reference sheet is provided					
	 For questions in Section I, use the Multiple provided 	le-Choice answ	wer sheet			
	For questions in Section II:					
	• Answer the questions in the bookl	ets provided				
	 Start each question in a new writing booklet 					
	 Show relevant mathematical reaso Marks may not be awarded for inc presented solutions, or where mul provided 	omplete or po	orly			
Total marks:	- Section I – 10 marks (pages 3 – 8)	Q1-10	/10			
70	• Attempt Questions 1– 10	Q11	/13			
	 Allow about 15 minutes for this section 	Q12	/12			
	Section II – 60 marks (pages 9 –15)	Q13	/12			
		Q14	/12			
	 Attempt Questions 11–15 Allow about 1 hour and 45 minutes 	Q14 Q15	/12 /11			

%


<u>Section I</u>

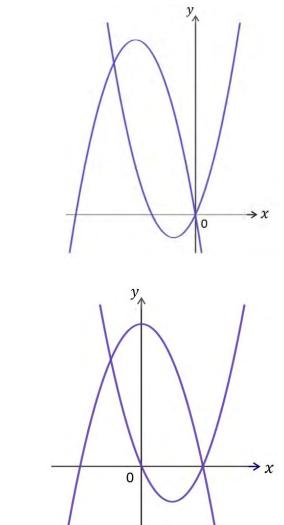
10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section Use the multiple-choice answer sheet provided for Questions 1 to 10.

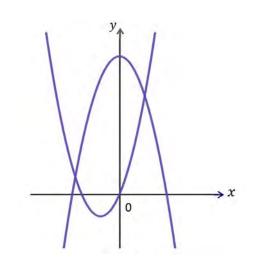
- 1. What is the range of $y = 4 \cos^{-1} \frac{3x}{2}$?
 - A. Range: $-4\pi \le y \le 4\pi$.
 - B. Range: $0 \le y \le -4\pi$.
 - C. Range: $0 \le y \le 4\pi$.
 - D. Range: $0 \le y \le 4$.
- 2. Consider the equation $3x^3 + 2x^2 x + 5 = 0$. What is the product of the roots of this polynomial equation?

A.
$$\frac{5}{3}$$

B. $\frac{1}{3}$
C. $-\frac{1}{3}$
D. $-\frac{5}{3}$

3. The diagram shows the graph of h(x) which is the product of the functions f(x) and g(x).




Which of the following is the best option to represent the graphs of the two functions f(x) and g(x)?

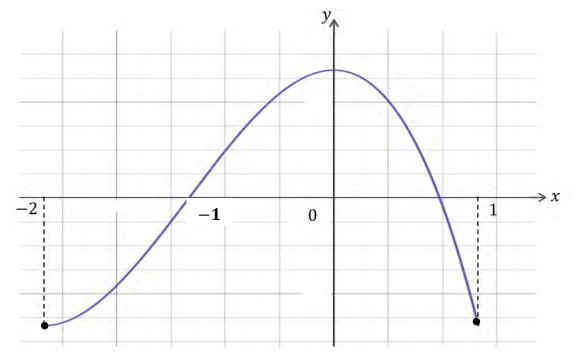
B.

C.

4. Which of the following is equivalent to $\int \cos^2 7x \, dx$?

A.
$$\frac{x}{2} + \frac{1}{14} \cos 7x + C$$

B. $\frac{x}{2} + \frac{1}{28} \sin 14x + C$
C. $\frac{x}{2} + \frac{1}{14} \sin 7x + C$
D. $\frac{x}{2} - \frac{1}{28} \cos 14x + C$


5. Which of the following is the exact value of $\int_{\frac{3}{\sqrt{2}}}^{3} \frac{4}{\sqrt{9-x^2}} dx$?

- A. $-\pi$ B. $-\frac{\pi}{4}$
- C. $\frac{\pi}{4}$
- D. π
- 6. How many years will it take for a bacterial population to reach 8000 if the population is modelled by the following function?

$$f(t) = \frac{10000}{1 + e^{-0.12(t-20)}}$$
, where *t* represents the number of years.

- A. t = 31.6
- B. t = 30
- C. $t = \ln 0.12$
- D. $t = \ln 0.25$

- 7. What is the term independent of *x* in the expansion of $\left(x^3 + \frac{2}{x}\right)^{20}$?
 - A. $\binom{20}{10} \cdot 2^{10}$
 - ^{B.} $\binom{20}{5} \cdot 2^{15}$
 - C. $\binom{20}{5} \cdot 2^{25}$
 - D. $\binom{20}{4} \cdot 2^{16}$
- 8. A parametric function is graphed below.

Which of the following shows the parametric equations of the curve above

for $-1 \le t \le 2$?

- A. x = t 1 and $y = 3t t^3$
- B. x = t + 1 and $y = 3t t^3$
- C. x = t + 1 and $y = -3t + t^3$
- D. x = t 1 and $y = 3t + t^3$

9. The magnitudes of two vectors p and q are 3 and 2 respectively.

The angle between these two vectors is θ such that $\frac{\pi}{3} \le \theta \le \frac{2\pi}{3}$.

 $\underbrace{\frac{p}{q}}_{q} p - q$

NOT TO SCALE

Which of the following is the correct range of |p - q|?

- $A. \quad 7 \le |\underline{p} \underline{q}| \le 19$
- B. $7 \leq |p q| \leq 13$
- C. $\sqrt{7} \le |\underline{p} \underline{q}| \le \sqrt{19}$
- D. $\sqrt{7} \le |\underbrace{p}_{\widetilde{\alpha}} \underbrace{q}_{\widetilde{\alpha}}| \le 13$

10. Consider the vector $\underline{p} = 2 (\ln x)^2 \underline{i} + 3 \ln x \underline{j}$ and the vector $\underline{q} = -5 \underline{i} + 12 \underline{j}$. The length of the projection of \underline{p} onto \underline{q} , where $\ln x$ is a positive integer, is $\frac{32}{13}$. What is the value of $|\underline{p}|$?

A. 5

- B. 10
- C. 13
- D. 15

<u>Section II</u> 60 marks Attempt Questions 11 – 15 Allow about 1 hour and 45 minutes for this section

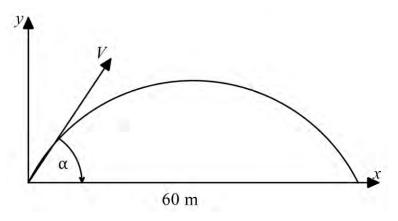
In Questions 11-15, your responses should include relevant mathematical reasoning and/or calculations

Ques	tion 11 (13 marks) Use a SEPARATE writing booklet.	Marks
(a)	(i) Show that $(x^2 + y)^4 = x^8 + 4x^6y + 6x^4y^2 + 4x^2y^3 + y^4$.	1
	(ii) Hence, or otherwise, expand $(b^4 - 1)^4$.	2
(b)	Solve the inequality $\frac{1}{x-3} \ge -1$.	3
(c)	The polynomial $P(x) = 2x^3 + mx^2 + nx - 20$ has a double root and P(2) = P'(2) = 0.	
	(i) Find the values of <i>m</i> and <i>n</i> .	3
	(ii) Hence, find the other root of $P(x)$.	2

(d) Express $9 \sin x + 40 \cos x$ in the form $R \sin(x + \alpha)$ where $0 \le \alpha \le \frac{\pi}{2}$. **2** Leave α in terms of 3 significant figures.

Question 12 (12 marks) Use a SEPARATE writing booklet.

- (a) Consider the vector $\underline{a} = \underline{i} 2\underline{j}$ and the vector $\underline{b} = x \underline{i} + y\underline{j}$ where x and y are real. **3** \underline{b} is perpendicular to \underline{a} and $|\underline{b}| = 2\sqrt{5}$. Find the possible values of x and y.
- (b) Find the equation of the tangent to the curve $y = \cos^{-1} 2x$ at x = 0. 3
- (c) Use mathematical induction to prove that, for all integers $n \ge 1$, **3**


$$(2^{1}+2) + (2^{2}+4) + (2^{3}+6) + \ldots + (2^{n}+2n) = 2^{n+1} + n(n+1) - 2.$$

(d) Find the exact value of
$$\int_{0}^{\frac{\pi}{3}} \cos 4x \cos 2x \, dx$$
.

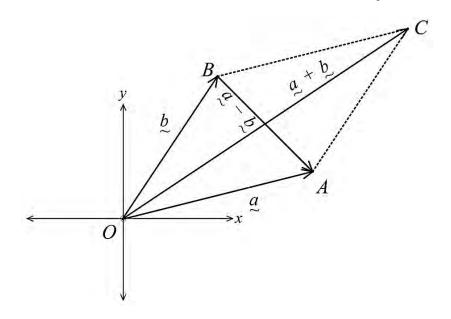
Marks

Question 13 (12 marks) Use a SEPARATE writing booklet.Marks

(a) A cricket player hits a ball from ground level. The ball is projected under gravity **3** with speed $V \text{ ms}^{-1}$ in a direction making an angle α with the horizontal. The ball lands on the boundary, which is 60 metres away.

The displacement vector of the ball is

$$r(t) = \begin{pmatrix} Vt\cos\alpha \\ -\frac{1}{2}gt^2 + Vt\sin\alpha \end{pmatrix},$$


where the horizontal and vertical displacement is measured in metres after t seconds and $g = 9.8 \text{ ms}^{-2}$. (DO NOT PROVE THESE)

If the angle of flight to the horizontal is 28° at the instant the ball leaves the bat, calculate the initial speed of the ball.

(b) It is given that $\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$. (D0 NOT prove this.) Hence, prove that the cubic equation $4x^3 - 3x + 1 = 0$, has only **two** solutions.

(c) The vectors \underline{a} and \underline{b} form two adjacent sides of a parallelogram *OACB*.

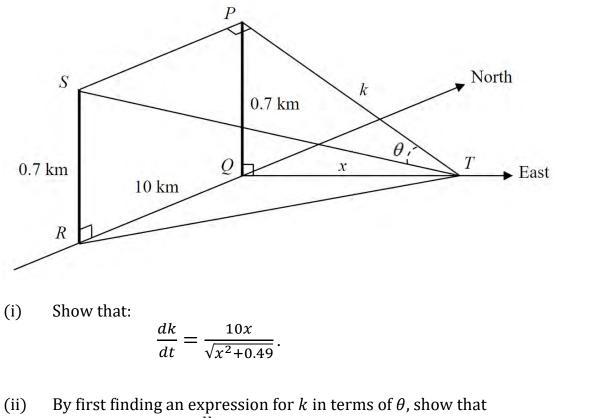
The diagonals of the parallelogram are the vectors a + b and a - b, as shown.

- (i) Prove that for the parallelogram, $(\underline{a} + \underline{b}) \cdot (\underline{a} \underline{b}) = |\underline{a}|^2 |\underline{b}|^2$. **2**
- (ii) Hence, show that for a rhombus, the diagonals are perpendicular.
- (d) Harry sets up a playlist which has ten tracks on the media player on his phone. **3**

Three of the tracks are by G Flip and two are by D'Arcy.

The media player is put into "shuffle" mode, where each track is played exactly once, but in a random order."

What is the **probability** that the three tracks by G Flip are played together and the two by D'Arcy are also played together?


(The five tracks do not necessarily have to be played together)

1

Question 14 (12 marks) Use a SEPARATE writing booklet.

- (a) A committee containing 4 men and 2 women is to be formed from a group of 9 men 1 and 7 women. In how many different ways can the committee be formed?
- (b) PQ and SR are two towers of height 0.7 km. Q is 10 km due North of R.
 A vehicle at T is travelling due East moving away from Q at a constant speed of 10 km/h.

Let the distance QT be x, the distance PT be k, and $\angle PTS$ be θ .

$$\frac{dk}{d\theta} = -10 \operatorname{cosec}^2 \theta.$$

(iii) Find the exact rate at which θ is changing when the vehicle is 2.4 km from *Q*. Leave your answer correct to 2 decimal places.

(c) Find the exact value of $\cos^{-1}(\sin\frac{4\pi}{3})$.

(d) Use the substitution
$$u = \tan x - x$$
 to find $\int \tan^2 x \sqrt{\tan x - x} dx$.

Marks

2

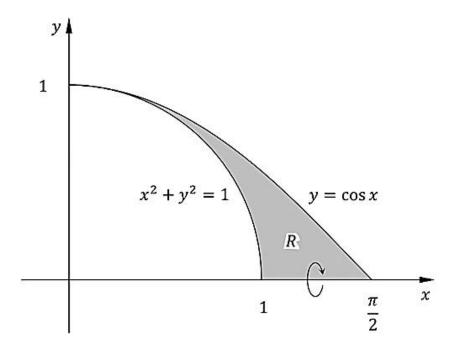
2

2

3

Question 15 (11 marks) Use a SEPARATE writing booklet.	Marks
(a) At a film festival, there are nine feature films. On the opening night, all 9 films are	2

shown at 6pm, 8pm as well as 10pm.


There are 200 film review critics at the opening night of the festival.

Each critic attends one movie at 6pm, a different movie at 8pm and then a third different movie at 10 pm. Each critic will end up seeing 3 different films in total.

Use the pigeonhole principle to show that at least one combination of three films will be reviewed by at least three different critics.

- (b) (i) Differentiate $x \tan^{-1} x$ with respect to x.
 - (ii) Hence, find $\int \tan^{-1} x \, dx$.

(c) The region *R* is bounded by the *x*-axis, the *y*-axis, *y* = cos *x* and the unit circle, as shown in the diagram.
 The graph of *y* = cos *x* lies on or outside the unit circle.

Find the exact volume of the solid of revolution formed when the region *R* is rotated about the *x*-axis.

2

1

(d) The Eiffel tower in Paris of height *h* metres stands with its base at a point *O* on a horizontal ground. At the same instant, stone *A* is projected from *O* with speed $V \text{ ms}^{-1}$ at an angle α above the horizontal and stone *B* is projected from the top of the tower with speed $U \text{ ms}^{-1}$ at an angle β above the horizontal, where $\alpha > \beta$. The two stones move in the same vertical plane under gravity, where the acceleration due to gravity is $g \text{ ms}^{-1}$, and collide after *T* seconds. At time *t* seconds after firing, the position vectors of the two stones are:

$$\underbrace{r_A(t) = (Vt\cos\alpha)\underline{i} + \left(-\frac{1}{2}gt^2 + Vt\sin\alpha\right)\underline{j}}_{\sim} \text{ and }$$
$$\underbrace{r_B(t) = (Ut\cos\beta)\underline{i} + \left(h - \frac{1}{2}gt^2 + Ut\sin\beta\right)\underline{j}}_{\sim}.$$

DO NOT PROVE THE ABOVE RESULTS.

Show that $T = \frac{h \cos \alpha}{U \sin(\alpha - \beta)}$.

3

END OF EXAMINATION

Question Number	Suggested Solutions	Marking Guidelines/ Teachers' Comments
1.	Range: $0 \le \frac{y}{4} \le \pi : 0 \le y \le 4\pi$.	1 Mark: C
2.	Let α , β , γ be the roots of $P(x) = 3x^3 + 2x^2 - x + 5 = 0$. $\alpha\beta\gamma = -\frac{d}{a} = -\frac{5}{3}$	1 Mark: D
3.	As $h(x)$ has 4 zeros, the graphs of $f(x)$ and $g(x)$ must have a total of 4 distinct zeros, which means the correct option must be B or D. Option B has 2 of its zeros on the negative part of the x axis, but $h(x)$ has only one zero on the negative part of the x axis, another zero at the origin and 2 zeros on the positive part of the x axis, which matches with the zeros of the 2 graphs in option D exactly. Hence, the correct option is D .	1 Mark: D
4.	$\cos^{2} nx = \frac{1}{2}(1 + \cos nx)$ $\int \cos^{2} 7x dx = \frac{1}{2} \int (1 + \cos 14x) dx$ $= \frac{1}{2} \left(x + \frac{1}{14} \sin 14x \right) + C$ $= \frac{x}{2} + \frac{1}{28} \sin 14x + C$	1 Mark: B
5.	$\int_{\frac{3}{\sqrt{2}}}^{3} \frac{4}{\sqrt{9 - x^2}} dx = 4 \times \int_{\frac{3}{\sqrt{2}}}^{3} \frac{1}{\sqrt{9 - x^2}} dx$ $= 4 \left[\sin^{-1} \left(\frac{x}{3} \right) \right]_{\frac{3}{\sqrt{2}}}^{3}$ $= 4 \left[\sin^{-1} \left(\frac{3}{3} \right) - \sin^{-1} \left(\frac{1}{\sqrt{2}} \right) \right]$ $= 4 \left[\frac{\pi}{2} - \frac{\pi}{4} \right]$ $= \pi$	1 Mark: D
6.	$\frac{10}{8} = 1.25$ $\therefore 1 + e^{-0.12(t-20)} = 1.25$ $e^{-0.12(t-20)} = 0.25$ $-0.12(t-20) = \ln 0.25$ $\therefore t = 31.6$	1 Mark: A

7.	$(a+b)^n$	1 Mark: B
	$= \binom{n}{0}a^{n}b^{0} + \binom{n}{1}a^{n-1}b^{1} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots$	
	$+\binom{n}{n}a^{0}b^{n}$	
	General term = $\binom{20}{r} x^{60-3r} \left(\frac{2}{x}\right)^r$	
	$= \binom{20}{r} 2^r x^{60-4r}$	
	For the term independent of <i>x</i> ,	
	$60 - 4r = 0 \implies r = 15$	
	\therefore The independent term = $\binom{20}{15} 2^{15}$	
	$= \binom{20}{5} 2^{15}$	
8.	We have $-1 \le t \le 2$ this means $-2 \le t - 1 \le 1$ and as from the graph $-2 \le x \le 1$ we can easily deduce that $x = t - 1$. This indicates that options B and C are invalid. Also, using the following table below we can see that option D is invalid as $(1, 14)$ is not a point on the graph. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 Mark: A
9.	0ption A 2 1 −2	1 Mark: C
	p - q	
	<u>q</u>	
	Using the cosine rule $ \underbrace{p}{-q} ^2 = \underbrace{p}{ }^2 + \underbrace{q}{ }^2 - 2 \underbrace{p}{ } \underbrace{q}{ }\cos\theta$	
	$ \begin{array}{c} 1p & q_1 & = 1p_1 & 1 q_1 & 21p_1 q_1 \cos \theta \\ \hline \text{When } \theta &= \frac{\pi}{3}, \ p - q_1 ^2 = 9 + 4 - 2 \times 3 \times 2 \times \frac{1}{2} \end{array} $	
	- · · · -	
	$ \underbrace{p}_{\widetilde{\mu}} - \underbrace{q}_{\widetilde{\mu}} = \sqrt{13 - 6} = \sqrt{7}$ When $\theta = \frac{2\pi}{3}$, $ \underbrace{p}_{\widetilde{\mu}} - \underbrace{q}_{\widetilde{\mu}} ^2 = 9 + 4 - 2 \times 3 \times 2 \times \left(-\frac{1}{2}\right)$	
	$ p - q = \sqrt{13 + 6} = \sqrt{19}$	
	So, $\sqrt{7} \le p - q \le \sqrt{19}$ Hence, the correct option is C .	
L	, 1	<u> </u>

10.	The length of the vector projection of vector <i>p</i> onto vector	1 Mark: B
	q is $\frac{p \cdot q}{ q }$ which we are given as $\frac{32}{13}$.	
	Now, $ q = \sqrt{(-5)^2 + 12^2} = \sqrt{169} = 13$	
	and $p \cdot q = -10 (\ln x)^2 + 36 \ln x$ this indicates that	
	$\frac{p \cdot g}{ q } = \frac{1}{10} \frac{(\ln x)^2 + 36 \ln x}{13} = \frac{32}{13}$ that is	
	$-10 (\ln x)^2 + 36 \ln x = 32$	
	$10 (\ln x)^2 - 36 \ln x = -32$	
	$10 (\ln x)^2 - 36 \ln x + 32 = 0$	
	Let $m = lnx$	
	$10 m^2 - 36 m + 32 = 0$	
	2 $(5m - 8)(m - 2) = 0$, that is, $m = 2$ or $m = \frac{8}{5}$.	
	As $m = \ln x$ is a positive integer then only	
	$\ln x = 2 \text{ is valid.}$	
	$p = 2 (\ln x)^2 \underline{i} + 3 \ln x \underline{j}$ Therefore, $p = 8 \underline{i} + 6 \underline{j}$ so $ p = \sqrt{8^2 + 6^2} = 10$.	
	Hence, the correct option is B .	

netion 11 EXAMINER'S COMMENTS $(x^{2}+y)^{4}$ $= \frac{\binom{4}{2}}{\binom{2}{2}} \frac{\binom{4}{y^{\circ}}}{y^{\circ}} + \frac{\binom{4}{1}}{\binom{2}{2}} \frac{\binom{2}{y'}}{y'} + \frac{\binom{4}{2}}{\binom{2}{2}} \frac{\binom{4}{y'}}{y'} + \frac{\binom{4}{2}}{\binom{2}{2}} \frac{\binom{4}{y'}}{y'} + \frac{\binom{4}{2}}{\binom{2}{2}} \frac{\binom{4}{y'}}{y'} + \frac{\binom{4}{2}}{\binom{4}{2}} \frac{\binom{4}{x'}}{y'} + \frac{\binom{4}{2}}{\binom{4}{2}} \frac{\binom{4}{y'}}{y'} + \frac{\binom{4}{y'}}{\binom{4}{2}} \frac{\binom{4}{y'}}{y'} + \frac{\binom{4}{y'}}{\binom{4}{y'}} \frac{\binom{4}{y'}}{y'} + \frac{\binom{4}{y'}}{\binom{4}{y'}} \frac{\binom{4}{y'}}{y'} + \frac{\binom{4}{y'}}{\binom{4}{y'}} \frac{\binom{4}{y'}}{y'} + \frac{\binom{4}{y'}}{\binom{4}{y'}} \frac{\binom{4}{y'}}$ $\frac{1}{2}(x^{2})^{-}y$ $+ \left(\frac{4}{3}\right)\left(\chi^2\right)\left(\frac{3}{y}\right)\left(\frac{4}{4}\right)$ $(\chi^2)^{\circ} q^{\overline{4}}$ $= x^{8} + 4x^{6}y + 6x^{4}y^{2} + 4x^{2}y^{3} + y^{4}$ (Using the Binomial Theorem) -The students were not penalised if the highlighted parts were missing (but they learn to write it out in Students lost half a mark if (+ not used or $(x^2)^r y^{4-r}$ was not used. - Some students wrote out Pascal's triangle and this was accepted to obtain the coefficients Alternative Solution (not recommended) $(x^{2}+y)^{2}(x^{2}+y)^{2} = (x^{4}+2x^{2}y+y^{2})$ $(x^{4}+2x^{2}y+y^{2})$ $= \chi^{8} + 2\chi^{6}y + \chi^{4}y^{2} + 2\chi^{6}y + 4\chi^{4}y^{2} + 2\chi^{2}y^{3} + \chi^{4}y^{2} + \chi^{4}y^{4} + \chi^{4}y^{2} + \chi^{4}y^{4} + \chi^{4}$ $x^{8} + 4x^{6}y + 6x^{4}y^{2} + 4x^{2}y^{3} + y^{4}$

EXAMINER'S COMMENTS Question 11 O)(ii) In previous expansion, let $x^2 = b^4$ and y = -1 $\therefore x = b^2$ and y = -1 — $\therefore (b^4 - 1)^2 =$ $(b^{2})^{8} + 4(b^{2})^{6}(-1) + 6(b^{2})^{4}(-1)^{2} + 4(b^{2})^{2}(-1)^{3} + (-1)^{4}$ $= b^{16} - 4b^{12} + 6b^8 - 4b^4 + 1 -$ (b) Method | - multiply both sides by $(x-3)^2$, $(x-3)^2 \times \frac{1}{x-3} = 2 - 1 \times (x-3)^2 = 1$ $x - 3 = -(x^2 - 6x + 9)$ $\begin{array}{c} x-3 \quad \overline{} - x^2 + 6x - 9 \\ x^2 - 5x + 6 \quad \overline{} \ \mathcal{O} \\ (x-2)(x-3) \quad \overline{} \ \mathcal{O} \end{array}$ IS 2 or X 73 - (1) as $x \neq 3$. -Lose $\frac{1}{2}$ if x = 3 included in the answer. -CFPE allowed for last step.

Question 11

b) Method 2 - Critical Point Method x-3 1 X-3 $\frac{1+x-3}{x-3}$ 7.0 1 zero at x=2 x-2 K discontinuity at x = 33 2-5 4 2 I X 2 0.2 1 x - 2-1 0 -2 X-3 -1 -0.5 0 $\frac{x-2}{x-3}$ 12 0 Undefine From the table we can see that $\frac{x-2}{x-3} > 0$ when $x \leq 2$ or x > 3.

EXAMINER'S COMMENTS Question 11 $P(x) = 2x^{3} + mx^{2} + nx - 20$ $\frac{P(2) = 0}{2(2)^{3} + m(2)^{2} + n(2) - 20} = 0$ 16 + 4m + 2n - 20 = 04m + 2n = 4 $P'(x) = 6x^2 + 2mx + n$ p'(2) = O $6(2)^{2} + 2m(2) + n = 0$ 24 + 4m + n = 04m + n = -244m + 2n = 4 - (1)4m + n = -24 - 2n = 4 - (-24) = 28(2): SVB n=28 into (2): 4m+28 = -24 4m = -52m = -13. m = -13, n = 28

EXAMINER'S COMMENTS $\frac{c}{(i)} \frac{l_{sing}}{l_{sing}} = \frac{m_{z} - 13}{m_{z}^{2} + m_{z}^{2} + n_{z}^{2} - 20}$ $) = \frac{2x^3 - 13x^2 + 28x - 20}{13x^2 + 28x - 20}$ From P(2) = P'(2) = 0, we know that 2 is a double root. The roots are 2, 2, and d.)sing coefficients of the Polynomial, the sum of roots equals - b. $\therefore 2 + 2 + \alpha = -(-13)$ $4 + \alpha = 13$ $\alpha = \underline{13} - \underline{8}$ $\therefore \text{ Other root : } \alpha = 5$ - students could also use product of roots, $2 \times 2 \times \propto = -(-20)$ - students could also divide r(x) by $(x-2)^2 = x^2 - 4x + 4$ A number of students only got 1 out of 2, as they factorised but didn't solve and find root.

EXAMINER'S COMMENTS Question 11 (d) $9\sin x + 40\cos x = R\sin(x+\alpha)$ 9 Sin x + 40 COSX = RSin x cosx + cosx sin a = R cosa sina + Rsina cos x : Equating coefficients : Reosa = 9 $Rsin \alpha = 40$ $R^{2}\cos^{2}\alpha + R^{2}\sin^{2}\alpha = 9^{2} + 40^{2}$ $R^2\left(\cos^2\alpha + \sin^2\alpha\right) = 1681$ $R^2 = 1681$ $R = \sqrt{1681} = 41$ $\frac{R\sin\alpha}{9} = \frac{40}{9}$ Rcosx $fand = \frac{40}{9}$ $\alpha = \tan^{-1}(\frac{40}{2}) = 1.35$ -Has to be in radians and to 3 significant figures ', $9 S | x + 40 \cos x = 41 \sin (x + 1.35)$

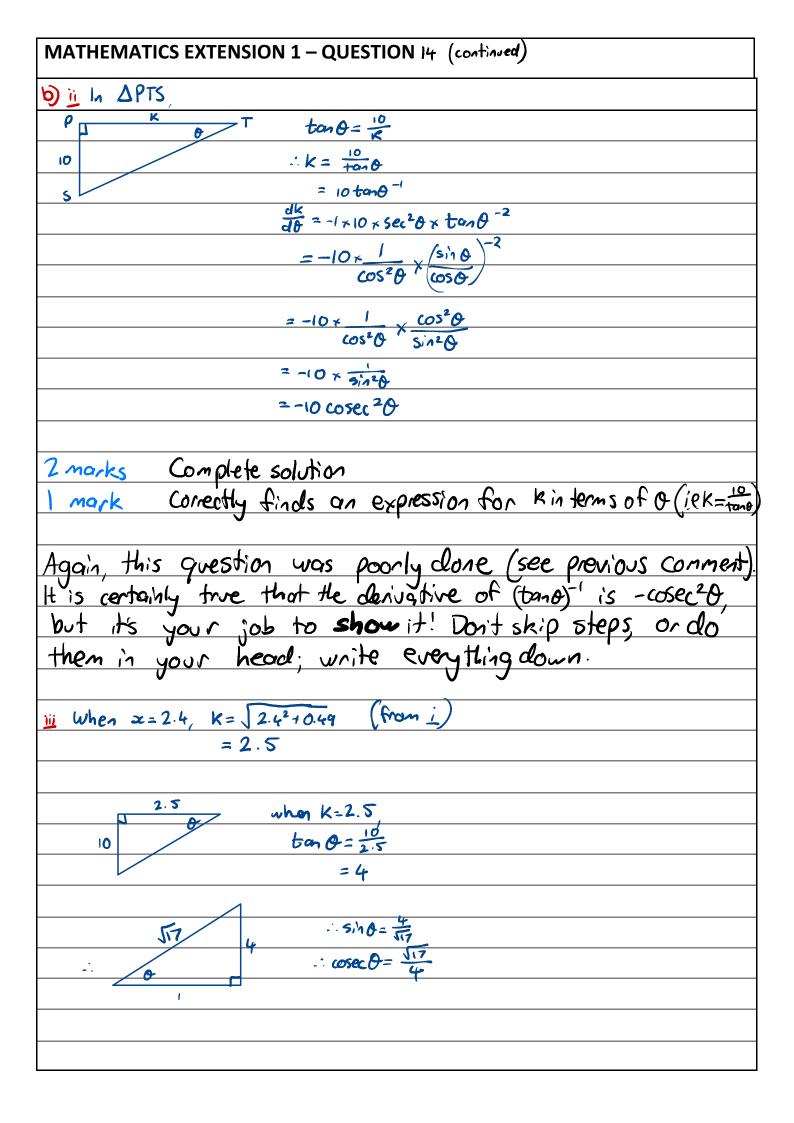
MATHEMATICS EXTENSION 1 - QUESTION 12 HSC Trial Exam 2023 MARKS MARKER'S COMMENTS SUGGESTED SOLUTIONS G)As & is perpendicular to a, then a · b = x-2y =0 , that is x=2y -- 0 look Also, $|b| = \sqrt{x^2 + y^2} = 2\sqrt{5}$ By squaring both sides, veget $x^2 + y^2 = 20$ --- (2) 1-----k By substituting (1) into (2), we get $(2y)^2 + y^2 = 20$ $4y^2 + y^2 = 20$ 5y2 = 20 $y^2 = 4$ y= ±2 $\begin{array}{rcl} x = & 2y \\ & = & 2(2) \end{array}$ = 2(-2) x=2, y=4 x=2, y=-4 $\frac{1}{2}\pi k$ 1, 1This question was generally well done. However, a few students did not consider both the positive and negative ' square nots of yothw ending up with only one set of x and y - vehies.

MATHEMATICS EXTENSION 1 – QUESTION 12 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS b) $\frac{4}{dx}(\cos^{-t}f(x)) = -f'(x)$ $\sqrt{1-(f(x))^2}$ $\frac{1}{dx} \left(\cos^{-1} 2x \right) = -2$ $\sqrt{1 - (2x)^{2}}$ = -21 mk Therefore, the gradient of tangent at x=0 is: -2 = -2 = -2 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{4}(0)^2$ The point is : $y = (os^{-1}(2(0)))$ $= \frac{\pi}{2}$ Equation of tangent at (0, $\pi/2$) is: $y-y_1 = m(x-z_1)$ 1/2 mls $y - \pi y_2 = -2(x - 0)$ Therefore, the equation of the tangent is: $y - \tilde{y}_2 = -2x$ Ink : y = -2x + Ry This question was generally well done ' Some students did not realise that cost (0) = Tip. (instead wrote down cost (0)=0 which is incorrect).

Inductive the pothosis: Assume the statement is true for n=k. If P(k) is true for some arbitrary $k \ge 1$ then $(2^{1}+2) + (2^{2}+4) + (2^{3}+6) + \dots + (2^{k}+2k)$ $= 2^{k+1} + k(k+1) - 2$ Prove that the statement is true for n=k+1 Required to Prove P(k+1): $(2^{1}+2) + (2^{2}+4) + (2^{3}+6) + \dots + (2^{k}+2k)$ $+ 2^{k+1} + 2(k+1) = 2^{k+2} + (k+1)(k+2) - 2$ LHS = $2^{k+1} + k(k+1) = 2 + 2^{k+1} + 2(k+1)$ Int for using the inductive hypothesis $(2^{1}+2) + (2^{1}+4) + (k+1) - 2 + 2^{k+1} + 2(k+1) - 2$ $(2^{1}+2) + (k+1) + k(k+1) + 2(k+1) - 2$ $(2^{1}+2) + (k+1) + k(k+1) + 2(k+1) - 2$ $(2^{1}+2) + (k+1)(k+2) - 2 = RHS$ appropriately $(2^{1}+2) + (k+1)(k+2) - 2 = RHS$ appropriate important to display this step. $(2^{1}+2) + (k+1) + 2(k+1) - 2 + 2^{1}$	SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
Base case - Prove true for $n=1$ P(1) is true since LHS = $2^{1}+2$ RHS = $2^{1+1}+1(1+1)-2$ = $2 + 2$ = $2^{2} + 2 - 2$ = 4 = $2^{2} = 4$ LHS = RHS proved true for $n=1$. Imk Inductive Hypothesis: Assume the statement is true for $n=k$. If P(k) is true for some arbitrary $k \ge 1$ then $(2^{1}+2) + (2^{2}+4) + (2^{2}+6) ++(2^{k}+2k)$ = $2^{k+1} + k(k+1) - 2$ Prove that the statement is true for $n=k+1$ Required to Prove P(k+1): $2^{1}+2) + (2^{2}+4) + (2^{3}+6) ++(2^{k}+2k)$ $\pm 2^{k+1} + 2(k+1) = 2^{k+2} + (k+1)(k+2) - 2$ LHS = $2^{k+1} + k(k+1) - 2 + 2^{k+1} + 2(k+1)$ Imk for using the riductive statement is true for $n=k+1$ $\frac{1}{2^{2}k^{k+1}} + k(k+1) + 2(k+1) - 2$ LHS = $2^{k+1} + k(k+1) + 2(k+1) - 2$ $\frac{1}{2^{2}k^{k+1}} + \frac{1}{2^{k}k^{k+1}} + \frac{1}{2^{k}k^{k}} + 1$	c) Let P(n) represent the proposition.		
LHS = $2^{1}+2$ RHS = $2^{1+1}+1(1+1)-2$ = $2+2$ = $2^{2}+2-2$ = 4 = $2^{2}=4$ \therefore LHS = RHS \therefore proved true for n=1. Ink Inductive typothesis: Assume the statement is true for n=k. If P(k) is true for some arbitrary $k \ge 1$ then $(2^{1}+2) + (2^{2}+4) + (2^{3}+5) + \dots + (2^{k}+2k)$ = $2^{k+1} + k(k+1) - 2$ Prove that the statement is true for n=ktl Required to Prove P(k+1): $2^{1}+2) + (2^{2}+4) + (2^{3}+6) + \dots + (2^{k}+2k)$ $\pm 2^{k+1} + k(k+1) - 2$ Prove that the statement is true for n=ktl Required to Prove P(k+1): $2^{1}+2) + (2^{2}+4) + (2^{3}+6) + \dots + (2^{k}+2k)$ $\pm 2^{k+1} + 2(k+1) = 2^{k+2} + (k+1)(k+2) - 2$ LHS = $2^{k+1} + k(k+1) - 2 + 2^{k+1} + 2(k+1)$ Imb for using from inductive hypothesis repropriately $\frac{2^{1}\cdot 2^{k+1}}{2^{k+2}} + k(k+1) + 2(k+1) - 2$ I mk - for $2^{k+2} + (k+1)(k+2) - 2 = RHS$ appropriate important to display this step. \therefore Proved the statement is true for n= k+1 then is the induction from inductive layeth esis repropriately $\frac{2^{1}\cdot 2^{k+2}}{2^{k+2}} + (k+1)(k+2) - 2 = RHS$ appropriately $\frac{2^{1}\cdot 2^{k+2}}{2^{k+2}} + (k+1)(k+2) - 2 = RHS$ appropriate $\frac{2^{1}\cdot 2^{k+2}}{2^{k+2}} + (k+1)(k+2) - 2 = RHS$ appropriate			
$= 2 + 2 \qquad = 2^{2} + 2 - 2$ $= 4 \qquad = 2^{2} + 2 - 2$ $= 4 \qquad = 2^{2} = 4$ $\therefore Lths = Rtts$ $\therefore proved true for n=1. Ink$ $Induchie Hypothesis:$ Assume the statement is true for n=k. $If P(k) is true for some arbitrary [k > 1] then (2^{1} + 2) + (2^{2} + 4) + (2^{3} + 6) + + (2^{k} + 2k)$ $= 2^{k+1} + k(k+1) - 2$ Prove that he statement is true for n=k+1 Required to Prove P(k+1): $2^{1} + 2) + (2^{2} + 4) + (2^{3} + 6) + + (2^{k} + 2k)$ $+ 2^{k+1} + 2(k+1) = 2^{k+2} + (k+1)(k+2) - 2$ $Lths = 2^{k+1} + k(k+1) = 2 + 2^{k+1} + 2(k+1)$ $= 2^{k+1} + k(k+1) = 2 + 2^{k+1} + 2(k+1)$ $= 2^{k+1} + k(k+1) = 2 + 2^{k+1} + 2(k+1)$ $= 2^{k+2} + (k+1)(k+2) - 2 = Rtts$ $= ppropriately$ $= 2^{k+2} + (k+1)(k+2) - 2 = Rtts$ $= ppropriately$ $= 1 - 2^{k+2} + (k+1)(k+2) - 2 = Rtts$ $= ppropriately$ $= 1 - 2^{k+2} + (k+1)(k+2) - 2 = Rtts$ $= ppropriately$ $= 1 - 2^{k+2} + (k+1)(k+2) - 2 = Rtts$ $= ppropriately$ $= 1 - 2^{k+2} + (k+1)(k+2) - 2 = Rtts$ $= ppropriately$ $= 1 - 2^{k+2} + (k+1)(k+2) - 2 = Rtts$ $= ppropriately$ $= 1 - 2^{k+2} + (k+1)(k+2) - 2 = Rtts$ $= ppropriately$ $= 1 - 2^{k+2} + (k+1)(k+2) - 2 = Rtts$ $= ppropriately$ $= 1 - 2^{k+2} + (k+1)(k+2) - 2 = Rtts$ $= ppropriately$ $= 1 - 2^{k+2} + (k+1)(k+2) - 2 = Rtts$ $= ppropriately$ $= 1 - 2^{k+2} + (k+1)(k+2) - 2 = Rtts$ $= ppropriately$ $= 1 - 2^{k+2} + (k+1)(k+2) - 2 = Rtts$ $= ppropriately$ $= 1 - 2^{k+2} + (k+1)(k+2) - 2 = Rtts$ $= ppropriately$ $= 1 - 2^{k+2} + (k+1)(k+2) - 2 = Rtts$ $= ppropriately$ $= 1 - 2^{k+2} + (k+1)(k+2) - 2 = Rtts$ $= ppropriately$ $= 1 - 2^{k+2} + 2^{k+$			
= 4 = $2^{\pm}=4$.:. LHS = RHS .:. proved true for n=1. Imk Inductive Hypothesis: Assume the statement is true for n=k. If P(k) is true for some arbitrary k > 1 then $(2^{t}+2) + (2^{t}+4) + (2^{t}+6)t + (2^{k}+2k)$ $= 2^{k+1} + k(k+1) - 2$ Prove that the statement is true for n=k+1 Required to Prove P(k+1): $(2^{t}+2) + (2^{t}+4) + (2^{t}+6)t + (2^{k}+2k)$ $+ 2^{k+1} + 2(k+1) = 2^{k+2} + (k+1)(k+2) - 2$ LHS = $2^{k+1} + k(k+1) - 2 + 2^{k+1} + 2(k+1)$ Imt for using the inductive hypothesis the inductive step. form inductive for n > 1 by the induction form of the statement is true for n = k+1 the init pulletion thence, P(n) is true for n > 1 by the principle of mathematical in duction Generally, well attempted. However, the highlighted concept was poorly	$LHS = 2^{1} + 2$ $RHS = 2^{1+1} + 1(1+1) - 2$		
Ltts = Rtts proved true for n=1. Ink Inductie Hypothesis: Assume the statement is true for n=k. If P(k) is true for some arbitrary $k \ge 1$ then $(2^{i}+2) + (2^{2}+4) + (2^{3}+6)t + (2^{k}+2k)$ $= 2^{k+1} + k(k+1) - 2$ Prove that the statement is true for n=ktl Required to Prove P(k+1): $2^{i}+2) + (2^{2}+4) + (2^{3}+6) + + (2^{k}+2k)$ $+ 2^{k+1} + 2(k+1) = 2^{k+2} + (k+1)(k+2) - 2$ Ltts = $2^{k+1} + k(k+1) - 2 + 2^{k+1} + 2(k+1)$ Imb for using $\frac{1}{2^{i}-2^{k+1}+k(k+1) - 2} + 2^{k+1} + 2(k+1)$ Imb for using $\frac{1}{2^{i}-2^{k+1}+k(k+1) + 2(k+1) - 2}$ I mk - for $\frac{1}{2^{i}-2^{k+2}} + (k+1)(k+2) - 2 = Rtts$ appropriately $\frac{1}{2^{i}-2^{k+2}} + (k+1)(k+2) - 2 = Rtts$ appropriate important to display this step. $\frac{1}{2^{i}-2^{k+2}-1} + k(k+1) + 2(k+1) - 2 + 2^{k+1} + 2^{k$	$= 2^{2} + 2 = 2^{2} + 2 - 2$		
i. proved true for n=1. Ink Inductive Hypothesis: Assume the statement is true for n=k. If P(k) is true for some arbitrary $k \ge 1$ then $(2^{i}+2) + (2^{i}+4) + (2^{i}+6)t + (2^{k}+2k)$ $= 2^{i}kt^{i} + k(k+1) - 2$ Prove that the statement is true for n=ktl Required to Prove P(k+1): $2^{i}+2) + (2^{2}+4) + (2^{3}+6) + + (2^{k}+2k)$ $+ 2^{k+1} + 2(k+1) = 2^{k+2} + (k+1)(k+2) - 2$ Letts = $2^{k+1} + k(k+1) - 2 + 2^{k+1} + 2(k+1)$ Imb for using $\frac{1}{2^{i}\cdot2^{k+1}} + k(k+1) - 2 + 2^{k+1} + 2(k+1)$ Imb for using $\frac{1}{2^{i}\cdot2^{k+1}} + k(k+1) + 2(k+1) - 2$ I mk - for $\frac{1}{2^{i}\cdot2^{k+2}} + (k+1)(k+2) - 2 = Rtts$ appropriately $\frac{1}{2^{i}\cdot2^{k+2}} + (k+1)(k+2) - 2 = Rtts$ appropriate important to display this step. $\frac{1}{2^{i}\cdot2^{k+2}} + \frac{1}{2^{k+2}} + \frac{1}{2^{k+2}$	$=4 = 2^2 = 4$		
Inductive the pothosis: Assume the statement is true for n=k. If P(k) is true for some arbitrary $k \ge 1$ then $(2^{1}+2) + (2^{2}+4) + (2^{3}+6) + \dots + (2^{k}+2k)$ $= 2^{k+1} + k(k+1) - 2$ Prove that the statement is true for n=k+1 Required to Prove P(k+1): $(2^{1}+2) + (2^{2}+4) + (2^{3}+6) + \dots + (2^{k}+2k)$ $+ 2^{k+1} + 2(k+1) = 2^{k+2} + (k+1)(k+2) - 2$ LHS = $2^{k+1} + k(k+1) = 2 + 2^{k+1} + 2(k+1)$ Int for using the inductive hypothesis $(2^{1}+2) + (2^{1}+4) + (k+1) - 2 + 2^{k+1} + 2(k+1) - 2$ $(2^{1}+2) + (k+1) + k(k+1) + 2(k+1) - 2$ $(2^{1}+2) + (k+1) + k(k+1) + 2(k+1) - 2$ $(2^{1}+2) + (k+1)(k+2) - 2 = RHS$ appropriately $(2^{1}+2) + (k+1)(k+2) - 2 = RHS$ appropriate important to display this step. $(2^{1}+2) + (k+1) + 2(k+1) - 2 + 2^{1}$	i. LHS = RHS		
Assume the statement is true for n=k. If P(k) is true for some arbitrary $k \ge 1$ then $(2^{1}+2) + (2^{2}+4) + (2^{3}+6) + \dots + (2^{k}+2k)$ $= 2^{k+1} + k(k+1) - 2$ Prove that the statement is true for n=k+1 Required to Prove P(k+1): $(2^{1}+2) + (2^{2}+4) + (2^{3}+6) + \dots + (2^{k}+2k)$ $+ 2^{k+1} + 2(k+1) = 2^{k+2} + (k+1)(k+2) - 2$ LHS = $2^{k+1} + k(k+1) - 2 + 2^{k+1} + 2(k+1)$ Imb for using the inductive step. $from inductive supethesis expreprisely (2^{1}+2) + (k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + (k+1) + 2(k+1) - 2 Imb - for(2^{1}+2^{1}+2) + (k+1)(k+2) - 2 = RHS expreprisely(2^{1}+2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) + 2(k+1) - 2 Imb - for(2^{1}+2) + k(k+1) + 2(k+1) + 2(k+1$	is proved true for n=1.	1-24	
If P(k) is true for some arbitrary $k \ge 1$, then $(2^{i}+2) + (2^{2}+4) + (2^{3}+6) + \dots + (2^{k}+2k)$ $= 2^{k+1} + k(k+1) - 2$ Prove that the statement is true for n=k+1 Required to Prove P(k+1): $2^{i}+2) + (2^{2}+4) + (2^{3}+6) + \dots + (2^{k}+2k)$ $+ 2^{k+1} + 2(k+1) = 2^{k+2} + (k+1)(k+2) - 2$ LHS = $2^{k+1} + k(k+1) - 2 + 2^{k+1} + 2(k+1)$ Imb for using the inductive step. $\frac{1}{2} \cdot 2^{k+1} + k(k+1) + 2(k+1) - 2$ $\frac{1}{2} \cdot 2^{k+2} + (k+1)(k+2) - 2 = RHS$ appropriately $\frac{1}{2} \cdot 2^{k+1} + k(k+1) + 2(k+1) - 2$ $\frac{1}{2} \cdot 2^{k+2} + (k+1)(k+2) - 2 = RHS$ appropriately $\frac{1}{2} \cdot 2^{k+2} + (k+1)(k+2) - 2 = RHS$ appropriate important to display this step. $\frac{1}{2} \cdot 2^{k+2} + (k+1)(k+2) - 2 = RHS$ appropriate $\frac{1}{2} \cdot 2^{k+2} + (k+1)(k+2) - 2 = RHS$ approprise $\frac{1}{2} \cdot 2^{k+2} + (k$	Inductive Hypothesis		
$ \begin{array}{c} k \geqslant 1 & \text{then} \\ (2^{1} + 2) + (2^{2} + 4) + (2^{3} + 6) + \dots + (2^{k} + 2k) \\ = 2^{k+1} + k(k+1) - 2 \\ \end{array} \\ \hline \\ \hline$	Assume the statement is true for n=k.		
$(2^{i}+2) + (2^{i}+4) + (2^{i}+6)t + (2^{k}+2k)$ $= 2^{k+1} + k(k+1) - 2$ Prove that the statement is true for n=ktl Required to Prove P(k+1): $2^{i}+2) + (2^{2}+4) + (2^{3}+6) + + (2^{k}+2k)$ $+ 2^{k+1} + 2(k+1) = 2^{k+2} + (k+1)(k+2) - 2$ LHS = $2^{k+1} + k(k+1) = 2 + 2^{k+1} + 2(k+1)$ Imb for using from inductive bypothesis $= 2^{i} 2^{k+1} + k(k+1) + 2(k+1) - 2$ $= 2^{k+2} + (k+1)(k+2) - 2 = RHS$ $= propriate important to display this step: = 1 pebraic important to display this step: = 1 pebraic = 1 pebraic = principle of mathematical in duction Generally, well attempted: However, the highlighted concept was poorly = 2^{i} 2^{i} 2^{k+2} + (k+1) + 2^{i} 4^{i} + 2^{i} + 2^{i} 4^{i} + 2^{i} 4^{i} + 2^{i} 4^{i} + 2$	If PCK) is true for some arbitrary		
$= 2^{k+1} + k(k+1) - 2$ Prove that the statement is true for n=k+1 Required to Prove P(k+1): $2^{1}+2) + (2^{2}+4) + (2^{3}+6) ++ (2^{k}+2k)$ $+ 2^{k+1} + 2(k+1) = 2^{k+2} + (k+1)(k+2) - 2$ $2^{k+1} + k(k+1) - 2 + 2^{k+1} + 2(k+1) 1 \text{ mb for using}$ $= 2^{k+1} + k(k+1) - 2 + 2^{k+1} + 2(k+1) 1 \text{ mb for using}$ $= 2^{k+1} + k(k+1) + 2(k+1) - 2 1 \text{ mb } - \text{ for}$ $= 2^{k+2} + (k+1)(k+2) - 2 = R \text{ mb } - \text{ for}$ $= 2^{k+2} + (k+1)(k+2) - 2 = R \text{ mb } - \text{ for}$ $= 2^{k+2} + (k+1)(k+2) - 2 = R \text{ mb } - \text{ for}$ $= 2^{k+2} + (k+1)(k+2) - 2 = R \text{ mb } - \text{ for}$ $= 1 \text{ gebraic}$ $= 1$			
Prove that the statement is true for n=k+1 Required to Prove $P(k+1)$: $2^{1}+2)+(2^{2}+4)+(2^{3}+6)+\ldots+(2^{k}+2k)$ $+ 2^{k+1}+2(k+1)=2^{k+2}+(k+1)(k+2)-2$ LHS = $2^{k+1}+k(k+1)-2+2^{k+1}+2(k+1)$ Int for using the inductive superthesis $\frac{1}{2\cdot2^{k+1}}+k(k+1)+2(k+1)-2$ Int - for $\frac{1}{2\cdot2^{k+2}}+(k+1)(k+2)-2=RHS$ superopriste important to display this step. $\frac{1}{2}$ Proved the statement is true for n= k+1 minipulation Hence, $P(n)$ is true for $n \ge 1$ by the principle of mathematical in duction Generally, well attempted: these poorly	$(2'+2) + (2^2+4) + (2^3+6) ++ (2^k+2k)$		
Required to Prove $P(k+1)$: $2^{1}+2)+(2^{2}+4)+(2^{3}+6)++(2^{k}+2k)$ $+ 2^{k+1}+2(k+1)=2^{k+2}+(k+1)(k+2)-2$ LHS = $2^{k+1}+k(k+1)-2+2^{k+1}+2(k+1)$ Interinductive step. $\frac{1}{2}\cdot 2^{k+1}+k(k+1)+2(k+1)-2$ Interinductive step. $\frac{1}{2}\cdot 2^{k+1}+k(k+1)+2(k+1)-2$ Interinductive step. $\frac{1}{2}\cdot 2^{k+2}+(k+1)(k+2)-2=RHS$ superoprivate important to display this step. $\frac{1}{2}\cdot 2^{k+2}+(k+1)(k+2)-2=RHS$ superoprivate $\frac{1}{2}\cdot 2^{k+2}+(k+1)(k+2)-2=RHS$	$=2^{k+1} + k(k+1) - 2$		
Required to Prove $P(k+1)$: $2^{1}+2)+(2^{2}+4)+(2^{3}+6)++(2^{k}+2k)$ $+ 2^{k+1}+2(k+1)=2^{k+2}+(k+1)(k+2)-2$ LHS = $2^{k+1}+k(k+1)-2+2^{k+1}+2(k+1)$ Interinductive step. $\frac{1}{2}\cdot 2^{k+1}+k(k+1)+2(k+1)-2$ Interinductive step. $\frac{1}{2}\cdot 2^{k+1}+k(k+1)+2(k+1)-2$ Interinductive step. $\frac{1}{2}\cdot 2^{k+2}+(k+1)(k+2)-2=RHS$ superoprivate important to display this step. $\frac{1}{2}\cdot 2^{k+2}+(k+1)(k+2)-2=RHS$ superoprivate $\frac{1}{2}\cdot 2^{k+2}+(k+1)(k+2)-2=RHS$			
$\frac{1}{2} + 2 + (2^{2} + 4) + (2^{3} + 6) + \dots + (2^{k} + 2k)$ $+ 2^{k+1} + 2(k+1) = 2^{k+2} + (k+1)(k+2) - 2$ $\frac{1}{2} + 2^{k+1} + k(k+1) - 2 + 2^{k+1} + 2(k+1) \qquad 1 \text{ mh for using}}{\text{from inductive bypothesis}} \qquad \text{the inductive step.} \\ \frac{1}{2} + 2^{k+1} + k(k+1) + 2(k+1) - 2 \qquad 1 \text{ mk} - \text{for} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + (k+1)(k+2) - 2 = RHs \qquad \text{spiropriste} \\ \frac{1}{2} + 2^{k+2} + 2^{k+1} + 2^{k+1} + 2^{k+1} + 2^{k+1} \\ \frac{1}{2} + 2^{k+1} + 2^{k+1} + 2^{k+1} + 2^{k+1} + 2^{k+1} + 2^{k+1} \\ \frac{1}{2} + 2^{k+1} + 2^{k$	Prove that the statement is true for n=k+1		
+ 2 ^{k+1} + 2(k+1) = 2 ^{k+2} + (k+1)(k+2) -2 LHS = 2 ^{k+1} + k(k+1) - 2 + 2 ^{k+1} + 2(k+1) Inh for using from inductive hypothesis the inductive step. from inductive hypothesis the inductive step. = 2 ^{k+1} + k(k+1) + 2(k+1) - 2 I mk - for = 2 ^{k+2} + (k+1)(k+2) - 2 = RHS sporoprishe important to display this step. Proved the statement is true for n= k+1 manipulation Hence, P(n) is true for n > 1 by the principle of mathematical in duction Generally, well attempted. However, the highlighted concept was poorly			
LHS = 2 ^{k+1} + k (k+1) - 2 + 2 ^{k+1} + 2(k+1) Ink for using from inductive hypothesis "propriately" = 2.2 ^{k+1} + k (k+1) + 2 (k+1) - 2 Ink - for = 2 ^{k+2} + (k+1) (k+2) - 2 = RHS sporopriste important to display this step. slaboric : Proved the statement is true for n= k+1 minipulation Hence, P(n) is true for n≥1 by the principle of mathematical induction Generally, well attempted. However, the highlighted concept was poorly			
from inductive hypothesis the inductive step. = 2.2k+1) + k(k+1) + 2(k+1) - 2 I mk - for = 2k+2 + (k+1)(k+2) - 2 = RHS appropriate important to display this step. algebraic Proved the statement is true for n= k+1 manipulation Hence, P(n) is true for n≥1 by the principle of mathematical induction Generally, well attempted. However, the highlighted concept was poorly			0 1
# 2.2 ^{k+1} + k(k+1) + 2(k+1) -2 mk - for = 2 ^{k+2} + (k+1)(k+2) - 2 = RHS appropriate important to display this step. algebraic : Proved the statement is true for n= k+1 manipulation Hence, P(n) is true for n≥1 by the principle of mathematical in duction Generally, well attempted. However, the highlighted concept was poorly		-the in	for using
(= 2 ^{k+2} + (k+1)(k+2) = 2 = RHS sporopriste important to display this step. algebraic is Proved the statement is true for n= k+1 manipulation thence, P(n) is true for n >1 by the principle of mathematical in duction Generally, well attempted. However, the highlighted concept was poorly	from is ductive by pothesis		
Proved the statement is true for n= k+1 manipulation thence, P(n) is true for n >1 by the principle of mathematical in duction Generally, well attempted. However, the highlighted concept was poorly	$= 2 \cdot 2^{k+1} + k(k+1) + 2(k+1) - 2$		
Proved the statement is true for n= k+1 manipulation thence, P(n) is true for n >1 by the principle of mathematical in duction Generally, well attempted. However, the highlighted concept was poorly	$\left(\frac{z}{z}\right)^{n+1} + \frac{(k+1)(k+2)}{z} = RHS$		
Hence, P(n) is true for n >1 by the principle of mathematical induction Generally, well attempted. However, the highlighted concept was poorly		· · · · · · · · · · · · · · · · · · ·	
principle of mathematical in Juction Generally, well attempted. However, the highlighted concept was poorly		k+ 1 *	contration of the
Generally, well attempted. However, the highlighted concept was poorly			
the highlighted concept was poorly			
attempted / displayed.			

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
(d) From the reference sheet		
$\cos A \cdot \cos B = 1 \left[\cos (A - B) + \cos (A + B) \right]$		
So, cos 4x cos 2x= 1 [cos (4x-2x) + cos (4x+2		
$\cos 4x \cos 2x = \frac{1}{2} \left[\cos 2x + \cos 6x \right]$		
Jo (cos 4x. cos 2x) dx		
$= \frac{1}{2} \int_{0}^{\frac{1}{3}} \left[\cos 2x + \cos 6x \right] dx$	Ink	
$= \frac{1}{2} \left[\frac{1}{2} \sin 2x_{1} + \frac{1}{6} \sin 6x \right]_{0}^{\frac{1}{2}}$	Imk	
$= \frac{1}{2} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{2\pi}{3} & \frac{1}{2} & \frac$		
$= \frac{1}{2} \left[\frac{1}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{6} \times 0 - 0 \right]$		
$= \sqrt{3}$	lmk	
0		
Quite Well done. A few students		
attempted longer and more		
double angle followed by integration		
using u- substitution.		
J		
-		

MATHEMATICS EXTENSION 1 – QUESTION 13 2023 Trial HSC SUGGESTED SOLUTIONS **MARKER'S COMMENTS** MARKS a) $\sqrt{\frac{1}{2}gt^2} + \sqrt{\frac{1}{2}sind}$ r(t) = $\therefore x = V + \cos \alpha$ $y = -\frac{1}{2}gt^{2} + Vtsind - -C$ If $\alpha = 28$ and $\gamma = 60$ sub in () $x = V + \cos \alpha$ $60 = V + \cos 28$ += 60 V0528 60 when y=0 V cox 28 $\left(\frac{60}{V\cos 28}\right)^2 + V \left(\frac{60}{V\cos 28}\right)^2$ sia28 Vcos28 = 60 + an 283600 3600 = 120 + an 2812 cos2 28 9 $V^{2}\cos^{2}28 = 3600q$ 120-tan 28 $V^2 = \frac{3600g}{120 \tan 28} \div \cos^2 28$ = 709.256. V = 26.6 m/s V>0


MATHEMATICS EXTENSION 1 – QUESTION 13 2023 Trial HSC SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** b) $4x^3 - 3x + 1 = 0$ _ _ _ _ _ _ Let x = cost sub in (1) $\therefore 4\cos^3\theta - 3\cos\theta + 1=0$ $\cos 3\theta + 1 = 0$ $\cos 3\theta = -1$ $\therefore 3\theta = \pi, 3\pi, 5\pi$ $\frac{\cdot}{3} \theta = \frac{\pi}{3} \pi, \frac{5\pi}{3}, \cdots$ 1 for 3 values of O (1/2 mark for 2 values of O) $\frac{1}{3} = c \partial S \frac{\pi}{3}, c \partial S \frac{\pi}{3}$ $b_{u} + \cos \frac{5\pi}{3} = \frac{1}{2} \frac{3}{3}$ $\frac{1}{2} = \frac{1}{2} - \frac{1}{2}$ $\frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}$

MATHEMATICS EXTENSION 1 – QUESTION 13		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
c) i) $(a + b) \cdot (a - b) = a \cdot a - a \cdot b + b \cdot a - b \cdot b$	(For correct
$= a \cdot a - a \cdot b + a \cdot b - b \cdot b$		expansion
		Mony students
- a.a - b.b	1/2	skipped this step
but $a \cdot a = \left a \right ^2$	2 mk	For stating this
$\frac{\cdot}{2} \cdot \left(\begin{array}{c} a + b \\ a \end{array} \right) \cdot \left(\begin{array}{c} a - b \\ a \end{array} \right) = \left \begin{array}{c} a \\ a \end{array} \right ^2 - \left \begin{array}{c} b \\ a \end{array} \right ^2$		property
$\frac{1}{10} \int \int \partial $		
ii) If AOBC is a rhombus the the adjacent sides are equal in length		
adjacent sides are equal in length i.e. $ \alpha = b $	1/2	
So $(a+b) \cdot (a-b) = a ^2 - b ^2$ from(i)		· · · · · · · · · · · · · · · · · · ·
$= \left \alpha \right ^2 - \left \alpha \right ^2 \leftarrow $	u	this line was not sed by many student
= 0		
Since the dot product of the 2 vectors	2	
is zero then they are perpendicular the diagonals are perpendicular	.	
NB/ Many students did not use the second line in their working. Even though full marks were awarded, ct is important to include		
second line in their working.		
Erch though full marks were		
awarded, it is important to include	2	
<u>ALL</u> steps in a SHOW question.		

MATHEMATICS EXTENSION 1 – QUESTION 13 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS d) There are 10! = 3628 800 ways that 10 tracks can be arranged in a play list. The 2 D'Arcy tracks are played together are one group and the 3 G Flip tracks played together are One group. The other 5 tracks are separately in their own group as (track. D'Arcy GFlip So as we have 7 groups of tracks then they can be arranged in 7: ways Within each arrangement, the 2 tracks by D'Arry can be arranged in 2! ways & the 3 tracks by GFlip can be arranged in 3! ways - . the number of shuffle orders that the songs can be played in is: $7! \times 3! \times 2! = 60480$ ways :. probability = 7! x 3! x 2! 10!

MATHEMATICS EXTENSION 1 – QUESTION 13 SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** 3 marks: Correct answer, with working. 2 marks : - Finds 10! = 3 628 800 AND - Uses 3! and 2! in the right context. mark : - Finds 10! = 3628 800 OR/ - Uses 3! and 2! in an attempt to find the number of ways 3 G Flip and 2 D'Arcy tracks can be arranged.

MATHEMATICS EXTENSION 1 – QUESTION 14 $9''(_{4} \times 'C_{2} = 2646$ Dih APQT, k²=x²+0.7² (Pythagoras' Theorem) 0.7 k= (2+0.49 (K70, length) QLI = (x² + 0.49) $\frac{dk}{dx} = \frac{1}{2} \times 2x \times (x^{2} + 0.49)^{-\frac{1}{2}}$ Also dr = 10, since the vehicle is moving at 10km/h dk - dk × dr $\frac{2}{\sqrt{x^2 + 0.49}} \times 10$ = 10z x2 +0.49 2 marks Complete solution, including showing where $K = \sqrt{x^2 \tau 0.49}$ comes from. 1 mark Clearly shows the relationship $k^2 = x^2 + 0.7^2$ 2 Correctly combines $\frac{dk}{dt}$ and $\frac{dz}{dt}$, without showing where $K = \sqrt{x^2 + 0.49}$ comes from. This question was poorly done. This is a "show" question; don't leave anything out. Feed back from HSC examinens is to show even more detail in a "show" or "prove" grestion, to convince the marker you know exactly where every part of the result comes from, and you haven't just worked backwords from what you're given. In this case, the expression Jx2 + 0.49 is given in the question, so it is important to show where this comes from Quoting it as the start of your working is not enough.

o) <u>اا</u> ((o	intinued)
	$\frac{d\theta}{dt} = \frac{d\theta}{dk} \times \frac{dk}{db}$
	lOx
	$-10 \cos e^{2} \Theta = \sqrt{x^{2} + 0.49}$
	= 1 10 (2.4)
	$= \frac{1}{10 [1]^2} \times \frac{10 (2.4)}{2.4 + 0.49}$
	$= -16 \times 24$ 17 25
	17 25
	= -384
	425
	= -0.90352
	= -0.90 radian per hour
3 morks	Complete solution
2 morks	Correctly finds K=2.5 and cosec 0= 17
mork	Correctly finds k=2.5
<u>o</u>	connectly combines nates to get an expression for de
	connectly combines notes to get an expression for do that depends only on Q.
Monu S	tudents had difficulty with this greation. Many also
did no	t show appropriate working to earn partial morks.
IF your	work is not set out clearly you risk earning
nothing	t show appropriate working to earn partial morks. work is not set out clearly you risk earning (or at best I mark) from this 3-mark question.
	te that calculus with trigonometry only works for
angles	in radians.
v	

MATHEMATICS EXTENSION 1 - QUESTION 14 (continued) let d= cos" (sin 4) **C** · cos d = sin 4 ... where 0424T $= \frac{-\sqrt{3}}{2}$ $\therefore \text{ related angle } \overline{\xi} \text{ 2nd quadrant}$ 45 $\therefore d = T - \frac{T}{6}$ $= \frac{5\pi}{6}$.: $\cos^{-1}(\sin\frac{4\pi}{3}) = \frac{5\pi}{6}$ 2 marks Complete solution mark Correctly identifying sint = - 13 Note that your calculator can tell you that $\cos^{-1}(\sin(\frac{4\pi}{3})) = 2.61799...$ Dividing this number by pi gives you 5, which is quite useful. let u= tanx - x tan'x tanx-x dx $\frac{du}{dx} = \sec^2 x - |$ = tartx (since 1+tontx=sec2x = Jonx-x tan'x dx du= tanzı dx Ju du Mostly well done in this case = \ u2du marks were not deducted for mixing variables but they may be in future. Your integral $\frac{2}{3}u^{\frac{3}{2}}+C$ should be entirely in x or $=\frac{2}{3}(\tan x - x)^{\frac{3}{2}} + C$ entirely in u but never a mix of the two. $=\frac{2}{3}\left(\frac{banx-x}{x}\right)^{3}+C$ 2 marks Complete solution 12 marks Complete solution, without "+c" Correctly reducing the integral to Judu mark

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
a) Need to choose 3 movies from the 9		Correctly finding 9 = 84
${}^{9}C_{3} = 84.$		1/2 mork lost for
$\frac{200}{84} = \frac{2 \cdot 38095238}{84} = 3$		Incorrect notation
84 ' '		when ceiling function
This means each of 84 critics could (at worst case) choose a differ	29]	was used.
combination of three movies. The next 84 critics could		
also choose these some combinations of movies (av we		
have already had critics view each of the combinations)		
(168 crital accounted for) Now the next critic would	ļ	
need to watch a combination of three movies that		
has already been watched by two other critics.		Clearly showing that
		at least one combination
. By the pigeonhole principle at least one		of three films will be
combination of three films will be reviewed by at		reviewed by at least
least three different critics.		three diffevent critics.
· Learn the correct ceiling function notation	,	
Be clear with explonation		
Avoid using \doteq or \approx .		

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
b) (i) Let $y = x \tan^{-1} x$ $u = x$ $v = \tan^{-1} x$		
$y = uv$ $u^{1} = 1$ $v' = \frac{1}{1+x^{2}}$		
$\frac{y'=vu'+uv'}{z+an^{-1}x+\frac{x}{1+x^2}}$	\bigcirc	Correctly differentiates
		÷
(ii) $\frac{me_{1H20}}{me_{1H20}}$		y= octan" oc
$\frac{(ii)}{\int \tan^{-1} x dx}$		
$= \int \left(\tan^{-1}x + \frac{x}{1+x^2} - \frac{x}{1+x^2} \right) dx$		Correctly cats up
		Correctly sets up
$= \int \left(fon^{-1} x + \frac{x}{1+x^2} \right) dx - \frac{1}{2} \int \frac{2x}{1+x^2} dx$		integral.
$= x \tan^{-1} x - \frac{1}{2} \ln \left[1 + x^{2} \right] + C$		Correct answer
$\frac{d}{dx} \left(x \tan^{-1} x \right) = \tan^{-1} x + \frac{x}{1+x^2}$ $\frac{d}{dx} \left(x \tan^{-1} x \right) dx = \int \left(\tan^{-1} x + \frac{x}{1+x^2} \right) dx$ $\therefore \int \frac{d}{dx} \left(x \tan^{-1} x \right) dx = \int \left(\tan^{-1} x + \frac{x}{1+x^2} \right) dx$		
$\frac{\partial}{\partial x} \left(x \tan x \right) = 10\pi x + 112$		
$\int dx = \left(\frac{2c}{1+x^2} \right) dx = \left(\frac{2c}{1+x^2} \right) dx$		
$\frac{\partial}{\partial x} \left(\frac{x}{x} \right) \frac{\partial}{\partial x} \left(\frac{x}{x} \right) \frac{\partial}$		
$x \tan^{-1} x = \int \tan^{-1} x dx + \frac{2}{2} \int \frac{2x}{1+x^2} dx$		
$x \tan^{-1} x = \int \tan^{-1} x dx + \frac{1}{2} \ln \left 1 + x^2 \right $	+ C,	
$x ran x = \int tan x^2 x^2$,	
$\frac{1}{1+x^2} + \frac{1}{2} \ln \left(\frac{1+x^2}{2} \right) + \frac{1}{2} \ln \left(1+x^2$	- C ₂	

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
T III V		
c) $V = \pi \int_{-\infty}^{\frac{1}{2}} \cos^2 x dx - \frac{1}{2} \times \frac{1}{3} \pi r^3$		Correct integration
		with correct bounds t
$V = \prod_{1} \int_{0}^{\pi} (\cos \partial x + 1) dx - \frac{2}{3} \pi(1)^{3}$		find V
-0		
$=\frac{\pi}{2}\left[\frac{1}{2}\sin \partial x + x\right] - \frac{2}{3}\pi$		Correctly found Vok
π []] 7π		of the hemisphere
$= \frac{\pi}{2} \left[\frac{1}{2} \sin \pi + \frac{\pi}{2} - (\sin 0 + 0) \right] - \frac{2\pi}{3}$		
$=\frac{\pi}{2}\left(0+\frac{\pi}{2}-0\right)-\frac{2\pi}{3}$		Correct answer.
$= \frac{\pi^2}{4} - \frac{2\pi}{3} \qquad units$		
3TT - 8TT 3		
$= \frac{3\pi^2 - 8\pi}{12} u^3$		If an incorvect pro
$=\frac{\pi(\pi-8)}{12}u$		was used to gain
$= 12^{u}$		the student needed
		square TT apply
METHOD 2		the identity ANI
$V = \pi \int_{0}^{\pi} \frac{V_{1}}{\cos^{2}x} dx - \pi \int_{0}^{1} (1 - x^{2}) dx$		then integrate it
$V = \pi \int_{-\infty}^{\infty} \cos^2 x dx - \pi \left(\left(l - x \right) \right) dx$		correctly.
		Correct integration
$V = \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} (\cos 2x + 1) dx - \pi \left[x - \frac{x^{3}}{3} \right]_{0}^{1}$		with correct bounds
		find the volume V,
$= \frac{\pi}{2} \left[2 \sin 2x + x \right]_{0}^{\pi} - \pi \left[1 - \frac{1}{3} \right]$		·
		Correct integration
$=\frac{\pi}{2}\left(2\sin\pi + \frac{\pi}{2} - 0\right) - \frac{2\pi}{3}$		with correct bounds
		find V2
$= \overline{q} - \frac{2\pi}{3}$		
		Correct answer
The question was poorly executed by any students. Most common mistake was: $\int_{-\infty}^{\frac{1}{2}} \left[\cos^2 x - (x^2 - 1) \right] dx$		
any shidents. Most common mistake was:		
$\int_{-\infty}^{\frac{\pi}{2}} \left[\cos^2 x - (x^2 - 1) \right] dx$		

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$V = \pi \int_{0} \left[\cos^{2} x - (1 - x^{2}) \right] dx$		
$= \pi \int_{0}^{1} \left(\frac{1}{2} + \frac{1}{2} \cos 2x - 1 + x^{2} \right) dx$		
$= \pi \int_{-\infty}^{1} \left(\frac{1}{2} \cos 2x - \frac{1}{2} + x^2 \right) dx$		
$=\pi\left[\frac{1}{4}\sin \Im x - \frac{1}{2}x + \frac{x^3}{3}\right]_0^1$		
$=\pi\left(\frac{1}{4}\sin^{2}-\frac{1}{2}+\frac{1}{3}\right)=\pi\left[\frac{1}{4}\sin^{2}-\left(\frac{1}{2}-\frac{1}{3}\right)\right]$		
$= \frac{\pi}{4} \sin 2 - \frac{\pi}{6}$		
$V_2 = \pi \int_{2}^{\pi} \cos^2 x dx$		
$= \frac{\pi}{2} \int (1 + \cos 2x) dx$		
$= \frac{\pi}{2} \left[\frac{\chi + 2 \sin 2\chi}{1 + 2 \sin 2\chi} \right]^{T_{2}}$		
$= \frac{\pi}{2} \left[\frac{\pi}{2} + \frac{1}{2} \sin \pi - 1 - \frac{1}{2} \sin 2 \right]$		
$= \frac{\pi}{2} \left(\frac{\pi}{2} - 1 - \frac{1}{2} \sin^2 \right)$		
$=\frac{\pi^2}{4}-\frac{\pi}{2}-\frac{\pi}{4}sin2$		
$\therefore V = V_{1} + V_{2}$ = $\frac{\pi}{4} \sin^{2} - \frac{\pi}{6} + \frac{\pi^{2}}{4} - \frac{\pi}{2} - \frac{\pi}{4} \sin^{2} - $		
$= \frac{\pi^2}{4} = \frac{8\pi}{12}$ $= \frac{\pi^2}{4} = \frac{2\pi}{3}$		

MATHEMATICS EXTENSION 1 – QUESTION 15		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
um ¹³ collide.		
- · · · F · · · · · · · · · · · · · · ·		
VmlJ		
a l		
0		
$\frac{METHOD}{2} At t = T they collide$		
$\frac{\text{METHOD 2}}{\text{VT}\cos x} = u T\cos \beta - \frac{1}{9}gT^{2} + VT\sin x = h - \frac{1}{2}gT^{2} + UT\sin \beta$		Equate <i>x</i> and y
$\frac{1}{\cos \omega} = U \cos \beta$		_components.
$\frac{2}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$		
C08d		sub (1) into 2) and
Sub () into 2		Multiply through
$\frac{U\cos\beta}{\cos\alpha}\left(\frac{T\sin\alpha}{2}\right) = h + UT\sin\beta \qquad (x\cos\alpha)$	x)	by cov a
UTSind COSB = h cosd + UT cosd SinB		Use identity
UT(sind cosp - cosd sinp) = h cosd		and complete proof
$UT \sin(\alpha - \beta) = h \cos \alpha$		
h cos d		
$T = Usin(\alpha - \beta)$		

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
METHOD 2 Collide of t=T		
$\frac{11}{100} = \frac{1}{2} \frac{1}{9} \frac{1}{100} = \frac{1}{2} \frac{1}{9} \frac{1}{100} = \frac{1}{2} \frac{1}{9} \frac{1}{100} + \frac{1}{2} \frac{1}{100} + \frac{1}{100} + \frac{1}{100} +$		Equate oc and y
$\frac{1}{2} V \cos \alpha = U \cos \beta \cdots (1)$		components.
$VT sind = h + UT sinB \times$	cosd	Compensit
> VIsing cosa = hcosa + UIsinB cosa		
Sub () into Tsing x Ucas B = h cour + UT sin B coura		Multiply through
utsindcosp - utcosdsing = hcosd		by course
$UT(sindos \beta - cos \sigma sin \beta) = h cos \sigma$		U
$UT sin (\alpha - \beta) = h cald$		replace Vcasa = U
$TUsin(a-\beta) = hcosd$		and complete proo
-		, , ,
$T = \frac{L\cos a}{U\sin(a-B)}$		

•